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The effect is considered of transverse shear deformation and rotatory inertia on the
natural frequencies of loaded structures. The paper covers the many structures for which
there is a linear or nearly linear relationship between the square of the natural frequencies
and load factor regardless of whether or not shear deformation is included. Equations are
derived and evaluated for predicting and/or correcting the errors caused by neglecting the
shear deformation of such structures when calculating their natural frequencies under load.
The equations are shown to give good predictions of the exact results for axially compressed
prismatic plate assemblies, including two sandwich panels with low core density and shear
stiffnesses. The equations, their results and the stiffened panel examples are presented so
as to give qualitative insight and numerical guidance both on the consequences of neglecting
shear deformation (and rotatory inertia) and on the accuracy of the simple correction
formulas presented. In particular, they show that the percentage errors caused by neglecting
shear deformation when calculating natural frequencies of loaded structures will be
greater—often very much greater—than the percentage errors in unloaded natural
frequencies or buckling loads caused by neglecting shear deformation.
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1. INTRODUCTION

There is a substantial range of structures, e.g., frames and stiffened plate structures, for
which each natural frequency of free vibration n varies with the load level s (=load factor
or uniform compressive stress depending upon the problem) either exactly or to a good
approximation according to the equation [1, 2]

n2

n2
rc
+

s

src
=1, (1)

where nrc and src are the rth unloaded natural frequency and the corresponding buckling
load factor or stress, respectively. Here ‘‘corresponding’’ means that the vibrational and
buckling modes are identical or similar and the subscript c has been introduced because
it is used later. The solid line of Figure 1 shows this linear relationship between n2 and
s graphically.

Many previous papers have considered the effect of load level on the natural frequencies
of free vibration of structures. Cases considered include the effect of axial compressive
loading on the natural frequencies of Bernoulli–Euler and Timoshenko beams [3–7], thin
rectangular plates and prismatic assemblies of thin plates [8–15]. Fewer authors have
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considered the effect of transverse shear deformation and rotatory inertia on the natural
frequencies of in-plane loaded thick plates [16–20].

Of the above papers, only in references [4, 5, 11, 13] has the linear relationship of
equation (1) been plotted as either exactly or approximately true. From, e.g., reference [21],
equation (1) is known to apply exactly to several types of individual members, including
simply supported Bernoulli–Euler, Timoshenko and Vlasov beams, as well as to thin flat
rectangular plates which are simply supported at their ends. The relationship has also been
shown [22, 23] to hold exactly for a family of thin, flat-walled structures which can be
modelled as assemblies of thin rectangular plates interconnected along their longitudinal
edges and simply supported at their ends.

The solid line in Figure 1 is assumed to have been calculated with shear deflection
ignored; e.g., Bernoulli beam theory or classical plate theory (CPT) is used. The dashed
line in Figure 1 represents an (actually or assumed) linear relationship between n2 and s

when shear deflection is taken into account; e.g., Timoshenko theory is used for the beam
case or shear deformable plate theory (SDPT) is used for the plate case. The values of an

and ss shown in Figure 1 are given by

an = n2
rs /n2

rc , as = srs /src . (2)

Here the subscript s denotes that shear deflection has been included (e.g., SDPT has been
used in the case of plates) and subscript c denotes its omission (e.g., CPT has been used
for plates or Bernoulli–Euler theory has been used for beams). Shear deflection must
reduce natural frequencies and buckling load factors, and so an Q 1 and as Q 1. Since
rotatory inertia affects nrs but not srs , an Q as Q 1 is to be expected and occurs for all results
known to the authors.

The main physical insights and conclusions of the present paper are applicable to any
structure or individual member for which the two straight lines of Figure 1 are exact or
reasonably close representations of the behaviour with shear deflection respectively
neglected or included. However, the examples presented are only for the very important
case of prismatic assemblies of thin plates which are simply supported at their ends; e.g.,
aerospace wing panels. It is shown below that Figure 1 explains the sensitivity to
longitudinally compressive load of the error caused by neglecting shear deformation when
calculating natural frequencies; e.g., by using CPT instead of SDPT. This both gives
physical insight and also enables predictions to be made by simple formulas which are
accurate enough for many design purposes, as is proved by the comparisons with the
(almost) exact results for the examples presented.

Figure 1. The linear relationship between the squared natural frequency and the critical buckling stress for
CPT (—) and SDPT (---), showing the definitions of an and as .
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2. PREDICTION OF ERRORS DUE TO IGNORING SHEAR DEFORMATION WHEN
CALCULATING NATURAL FREQUENCIES OF LOADED STRUCTURES,

ILLUSTRATED BY PRISMATIC PLATE ASSEMBLIES

Up to the end of the paragraph containing equation (7), this section gives the
background on the prismatic plate assemblies used to illustrate the method. It can be
omitted if desired. It has been shown [24] that for uniformly compressed plates, or
prismatic assemblies of isotropic plates [22], with simply supported ends, the frequency n
and the longitudinal compressive stress s always occur together in the combination
(s+4rl2n2) when assembling the CPT dynamic stiffness matrix for any given value of the
longitudinal half-wavelength l. Hence it was determined [24] that if, for any chosen value
of l, nrc was the rth of the CPT natural frequencies of an unloaded isotropic assembly of
density r, then the panel would possess an identical mode of buckling under uniform
longitudinal compressive stress src given by

src =4rl2n2
rc . (3)

Here the subscript c denotes the use of CPT. Hence, for the same value of l, the natural
frequencies, nsrc , of such an assembly when subjected to a uniform longitudinally invariant
stress s can be obtained from the unloaded natural frequencies as [22]

n2
src = n2

rc − s/(4rl2). (4)

Combining equations (3) and (4) gives

n2
src

n2
rc

=1−
s

src
, (5)

which is essentially equation (1).
From the governing equations for SDPT (see equation (1) of reference [25]) it can be

seen that, for the commonest case in which the longitudinally compressive loads for the
plates are assumed to be acting at their neutral surfaces, the first moment of mass of the
cross-section (m1) will be zero and, consequently, many of the applied load and natural
frequency terms occur in the correct combination for the SDPT equivalent of equation (4)
to hold; i.e., they appear in the combination (s+4rl2n2). However, one or more other
combinations of s and n also occur, e.g., involving the second moment of mass of the plate
cross-section, and so the SDPT equivalent of equations (3) and (4) cannot be used to
convert between the SDPT critical buckling stresses and SDPT frequencies exactly.
Nevertheless, because the combination (s+4rl2n2) occurs it is reasonable to hypothesize
that the SDPT equivalent of equation (4) may be a sufficiently good approximation for
many purposes, so that equations (3) and (4) can be rewritten for SDPT as

srs 1 4rl2n2
rs and n2

srs 1 n2
rs − s/(4rl2). (6, 7)

This hypothesis is adopted throughout this paper and its validity is explored and largely
justified by comparison with (almost) exact results given in sections 4 and 5.

The linear relationship between n2 and s obtained when using CPT is shown as the solid
straight line in Figure 1, and CPT and SDPT are interpreted loosely in the rest of sections
2 and 3 to indicate, respectively, the omission or inclusion of shear deformation for any
type of structure; e.g., plane frames as well as prismatic plate assemblies. The ratios an and
as of equation (2) can, if known, be used to construct the dashed line shown on Figure 1.

Let

b= s/src . (8)



. .   . . 710

Then it can be seen from Figure 1 that

AC= n2
src , AB= n2

srs , (9)

where c and s denote CPT and SDPT and r denotes the rth natural frequency n in the
presence of the load factor or stress s. Hence o, the percentage error caused by using CPT
to calculate n2

srs , is defined as follows:

o=1000BC
AB1=1000AC−AB

AB 1=10060nsrc

nsrs1
2

−17; (10)

i.e., n2
src will be too high by this percentage, and the percentage correction, d, required to

obtain n2
srs from n2

src , is given by

d=−1000BC
AC1=−1000AC−AB

AC 1=−10061−0nsrs

nsrc1
2

7. (11)

Equations (1) or (5) and (8) give

0nsrc

nrc1
2

=01−
s

src1=1− b. (12)

Similarly, for the SDPT case, substituting equation (6) in equation (7) (or, alternatively,
the dashed straight line of Figure 1 if the structure is not a prismatic plate assembly) gives

0nsrs

nrs1
2

101−
s

srs1. (13)

Substituting equation (2) into equation (13) and then using equation (8) gives

0nsrs

nrc1
2 1
an

101−
s

as src1=1−
b

as

; (14)

i.e.,

0nsrs

nrc1
2

1 an 01−
b

as1. (15)

Dividing equation (12) by equation (15) gives

0nsrc

nsrs1
2

1 1− b

an (1− b/as )
. (16)

Hence the percentage error of the CPT frequencies, o, is given by equations (10) and (16)
as

o=10060nsrc

nsrs1
2

−171 1006 (1− b)
an (1− b/as )

−17 (17)

and the percentage correction needed to CPT is given by equations (11) and (16) as
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Figure 2. The limiting cases of Figure 1 for the hypothesis that an E as .

d=−10061−0nsrs

nsrc1
2

71−10061−
an (1− b/as )

(1− b) 7. (18)

Note particularly that only equations (3)–(7) are specific to prismatic plate assemblies,
whereas equations (1), (2) and (8)–(18) (and also equations (19)–(23) below) all apply to
any structure for which s and the square of the natural frequencies are approximately
linearly related both with and without shear deformation included; i.e., equation (12) is
approximately true and equation (13) holds.

3. SOME OF THE PHYSICAL INSIGHTS OBTAINABLE FROM FIGURE 1

Many qualitative insights for any structure for which the load factor or stress s is
linearly related, or approximately linearly related, to n2, i.e., to the square of any chosen
natural frequency of the structure, are given in Figure 1. The simple equations derived from
Figure 1 in section 2 also enable very helpful ‘‘back of the envelope’’ calculations to be
made. These give exact numerical predictions of o and d when the two straight lines of
Figure 1 exactly represent the behaviour of the structure and give useful approximate
numerical predictions of o and d when the true curves for the structure with and without
shear deformation included are reasonably close to, respectively, the dashed and solid
straight lines of Figure 1. Some of these insights and numerical predictions are discussed
in this section.

On the hypothesis promulgated above that an Q as , and remembering that an Q 1 and
as Q 1, in Figure 2 are represented the two limiting cases of an = as and as =1. Conclusions
that hold for both of these cases in the following discussion will hold for any possible
combinations of an and as .

The percentage error o obtained by ignoring shear deflection is 100× (BC/AB); see
equation (10). For Figure 2(a), BC is constant as b is increased, because the solid and
dashed lines are parallel, while AB decreases monotonically. Hence o increases
monotonically as b is increased. For Figure 2(b) simple geometry shows that the ratio
BC/AB is independent of b. However, since the limit of as =1 can be approached but never
reached by shear deformable structures, the conclusion from Figures 2(a) and 2(b) is that,
for all possible values of an or as , the error o increases monotonically as b increases. This
means that increasing the load on the structure will always result in increased percentage
errors in natural frequencies calculated by neglecting shear deformation.

Similar arguments to those in the previous paragraph show that the absolute percentage
correction =d = (=−d) needed to obtain the shear deformable natural frequencies from
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those calculated by ignoring shear deformation must also increase monotonically as the
load on the structure is increased; see, e.g., equation (11).

It can be seen from Figure 1 that, as b approaches as , o (=100×BC/AB) approaches
infinity and =d = (=100×BC/AC) approaches 100%. Of course bq as is not physically
possible, because the real structure buckles when b= as . Note that the value of an has
almost no effect on the very high values of o and d obtained as b:as , and hence the average
value of an and as will not be a very good guide to the values of o and d in this region.
Table 1 (ignoring the last four columns, which are discussed beneath equation (22))
illustrates this by using predictions of o and d obtained from equations (17) and (18). Note
that for an = as = a (say) these equations simplify to

o1 10001− a

a− b1, d1−10001− a

1− b1. (19, 20)

Clearly this table gives a numerical ‘‘feel’’ for the behaviour of o and d. It takes less than
one minute to obtain o from equation (17) or d from equation (18) if an and as are known,
and equations (19) and (20) are even easier to apply when it is assumed that an and as are
equal. Hence it is easy to obtain a numerical prediction for any problem not covered by
the table.

The case an = as is of considerable practical importance. For example, a designer who
knows the values of the natural frequencies of the unloaded structure with shear deflection
both included and ignored can calculate an and hence can obtain the chain-dotted line of
Figure 3 by assuming that as = an . The dashed line in Figure 3 is the SDPT line shown
dashed in Figure 1 and will be assumed in this paragraph to be the exact result for the shear
deformable case. The dotted line in Figure 3 is obtained if the buckling loads are known
with shear deflections both included and ignored, so that as can be calculated and it is then
assumed that an = ss . The percentage errors on for the chain-dashed line and os for the
dotted line are given by Figure 3 as

on =−100×
DB
AB

, os =100×
BE
AB

, (21)

T 1

Various predictions of percentage errors and percentage corrections

o d on os dn ds

b an as
1
2 (an + as ) (%) (%) (%) (%) (%) (%)

0·00 0·90 0·96 0·93 11·11 −10·00 0·00 6·67 0·00 −6·25
0·00 0·96 0·96 0·96 4·17 −4·00 0·00 0·00 0·00 0·00
0·20 0·90 0·96 0·93 12·28 −10·94 −1·75 6·67 1·79 −6·25
0·20 0·96 0·96 0·96 5·26 −5·00 0·00 0·00 0·00 0·00
0·40 0·90 0·96 0·93 14·29 −12·50 −4·76 6·67 5·00 −6·25
0·40 0·96 0·96 0·96 7·14 −6·67 0·00 0·00 0·00 0·00
0·60 0·90 0·96 0·93 18·52 −15·63 −11·11 6·67 12·50 −6·25
0·60 0·96 0·96 0·96 11·11 −10·00 0·00 0·00 0·00 0·00
0·80 0·90 0·96 0·93 33·33 −25·00 −33·33 6·67 50·00 −6·25
0·80 0·96 0·96 0·96 25·00 −20·00 0·00 0·00 0·00 0·00
0·90 0·90 0·96 0·93 77·78 −43·75−100·00 6·67 a −6·25
0·90 0·96 0·96 0·96 66·67 −40·00 0·00 0·00 0·00 0·00
0·96 0·90 0·96 0·93 a −100·00 −a — a —
0·96 0·96 0·96 0·96 a −100·00 — — — —
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Figure 3. A comparison of the lines for the case in which shear deflection is included. ----, Taken from Figure 1;
–-–, obtained when an is known and it is assumed that as = an; · · · ·, obtained when as is known and it is assumed
that an = as .

where the negative sign indicates an underestimate. Similarly, the correction percentages
dn and ds are given by

dn =100×
DB
AD

, ds =−100×
BE
AE

, (22)

where the negative sign indicates a reduction. Note that it is obvious from the geometry
of Figure 3 that BE/AE and BE/AB are both constant for all values of b, so that equations
(21) and (22) show that os and ds do not vary with the load or stress level. It is also clear
that assuming as = an gives underestimates of the loaded natural frequency for all values
of b, and that assuming an = as gives overestimates for all values of b. The last four
columns of Table 1 confirm these facts by giving the values of on , os , dn and ds obtained
from equations (21) and (22), as can be verified by applying similar triangles to the
geometry of Figure 3.

Note that to obtain numerical results for loaded natural frequencies nsrs from the
preceding paragraph it is necessary to know the CPT buckling stress src in the chain-dotted
case, or nrc in the dotted case. Alternatively, they can be obtained—either exactly or
approximately depending on the problem—from equation (3).

4. RESULTS FOR AN ORTHOTROPIC PANEL

In Figure 4 are shown the geometric and lay-up details of a realistic aircraft wing panel
similar to one which has previously been the subject of a parametric study [26] as part of
a GARTEUR (Group for Aeronautical Research and Technology in Europe) Action
Group on Structural Optimization. The material properties of each ply were as follows:
E11 =125 GPa, E22 =8·8 GPa, G12 =G13 =5·3 GPa, G23 =0·5G13 =2·65 GPa, n12 =0·35
and r=1620 kg/m3. The stiffener web and flange breadths, bw and bf , were 59·30 mm and
25·0 mm, respectively. The skin, flange and web were formed from the same symmetric
(245, 0, 90, 0, 345) laminate with layer thicknesses of 1·697 mm and 0·207 mm for the
0° and 90° plies, respectively, and 0·786 mm for the 245° plies. Hence, on Figure 4,
ts = tf = tw =6·745 mm. As the plates of the panel are almost orthotropic, the natural
frequencies could be found to high accuracy by using the quick VIPASA analysis route
of VICONOPT [27] in place of the ‘‘exact’’ VICON [28] analysis; i.e., by using a single
value of l, as assumed in this paper, rather than by coupling responses for different values
of l. (For this panel, the differences between the results given by VIPASA and VICON
analyses were observed to be 0·6% or less.) These VIPASA analysis results are denoted
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by using a superscript V throughout the results that follow; e.g., sV
rc and sV

rs are the buckling
stresses given by VIPASA theory using CPT and SDPT, respectively.

The accuracy obtained when the unloaded CPT and SDPT natural frequencies of this
panel were converted to critical buckling stresses by using equations (3) and (6) is
demonstrated in Table 2. It can be seen that the percentage error, oc , incurred by using
equation (3) to calculate the CPT critical buckling stresses from the CPT natural
frequencies is zero throughout, as must be the case for a VIPASA analysis of panels with
component plates with identical orthotropic properties, so that they share the same values
of s and r. Fortunately, and less predictably, the corresponding errors os for the SDPT
case are also very small (=os =E 0·418%). oc and os were calculated using values of sV

rc and
sV

rs that are not shown in the table. Table 2 also gives ocs , the percentage error incurred
when CPT is used instead of SDPT to find the natural frequencies of the panel; i.e., the
percentage by which the value of nV

rc in the table exceeds that of nV
rs .

The smallest value ocs =0·27% occurred for the fundamental SDPT mode (i=1, r=1),
while the largest value of ocs =6·82% occurred for the 43rd SDPT mode when i=7 and
r=4; i.e., the fourth mode where l= l/7. (This result should be interpreted with some

Figure 4. The stiffened aircraft wing panel analysed using VIPASA. The length of the panel is l=752 mm.
(a) Cross-section; (b) detail of regions 1 and 2 of the panel.



     715

T 2

The first 45 natural frequencies nV
rc and nV

rs of the panel of Figure 4, showing the number of
longitudinal half-waves in the mode, i (=l/l), and the critical buckling stresses, src and srs ,
predicted by equations (3) and (6). oc and os are the percentage errors, obtained by comparing
the predicted critical buckling stresses with the correct values (calculated by VIPASA), while
ocs is the percentage error that would be caused by using the correct CPT value instead of

the correct SDPT value

Predicted Predicted
nV

rc src oc nV
rs srs os ocs

No. i r (Hz) (Mn/m2) (%) i r (Hz) (Mn/m2) (%) (%)

1 1 1 349·972 448·826 0·000 1 1 349·032 446·418 −0·019 0·27
2 1 2 380·919 531·710 0·000 1 2 379·773 528·518 −0·048 0·30
3 1 3 456·057 762·167 0·000 1 3 453·888 754·933 −0·107 0·48
4 1 4 566·923 1177·764 0·000 1 4 562·855 1160·923 −0·179 0·72
5 1 5 763·873 2138·225 0·000 1 5 754·444 2085·761 −0·198 1·25
6 2 1 777·114 553·249 0·000 2 1 769·614 542·621 −0·160 0·98
7 1 6 822·802 2480·855 0·000 1 6 808·118 2393·095 −0·260 1·82
8 2 2 830·462 631·815 0·000 2 2 821·098 617·648 −0·162 1·14
9 2 3 867·342 689·178 0·000 2 3 854·881 669·518 −0·122 1·46

10 2 4 943·763 815·974 0·000 2 4 923·764 781·758 −0·131 2·17
11 1 7 1077·801 4256·843 0·000 1 7 1048·592 4029·246 −0·250 2·79
12 3 1 1118·121 509·046 0·000 3 1 1094·020 487·338 −0·191 2·20
13 1 8 1167·213 4992·421 0·000 1 8 1134·303 4714·860 −0·258 2·90
14 3 2 1169·600 556·999 0·000 3 2 1138·783 528·034 −0·203 2·71
15 3 3 1253·763 640·045 0·000 3 3 1217·397 603·454 −0·174 2·99
16 2 5 1272·590 1483·637 0·000 2 5 1240·765 1410·360 −0·262 2·57
17 2 6 1292·222 1529·767 0·000 2 6 1261·301 1457·432 −0·229 2·45
18 2 7 1315·685 1585·822 0·000 3 4 1282·580 669·805 −0·146 3·26
19 3 4 1324·341 714·134 0·000 2 7 1282·832 1507·615 −0·229 2·56
20 4 1 1422·499 463·441 0·000 4 1 1379·035 435·553 −0·242 3·15
21 1 9 1435·982 7556·292 0·000 1 9 1386·439 7043·888 −0·277 3·57
22 4 2 1455·532 478·571 0·000 4 2 1397·981 447·603 −0·246 3·40
23 4 3 1569·383 564·091 0·000 4 3 1505·706 519·244 −0·231 4·23
24 4 4 1665·419 635·240 0·000 4 4 1588·489 577·909 −0·212 4·84
25 1 10 1740·272 11 098·010 0·000 1 10 1672·339 10 248·470 −0·304 4·06
26 5 1 1749·845 448·818 0·000 5 1 1685·785 416·558 −0·295 3·80
27 5 2 1763·145 455·666 0·000 5 2 1696·462 421·851 −0·295 3·93
28 2 8 1787·143 2925·967 0·000 2 8 1756·506 2826·506 −0·173 1·74
29 3 5 1787·269 1300·648 0·000 3 5 1757·185 1257·230 −0·278 1·71
30 3 6 1821·724 1351·279 0·000 3 6 1786·037 1298·855 −0·283 2·00
31 3 7 1865·434 1416·901 0·000 5 3 1799·752 474·784 −0·286 4·96
32 5 3 1888·925 522·998 0·000 3 7 1825·057 1356·228 −0·288 2·21
33 2 9 1917·005 3366·642 0·000 2 9 1875·173 3221·316 −0·222 2·23
34 5 4 1985·071 577·594 0·000 5 4 1878·276 517·118 −0·273 5·69
35 6 1 2122·961 458·743 0·000 6 1 2033·723 420·987 −0·359 4·39
36 6 2 2132·392 462·827 0·000 6 2 2041·098 424·046 −0·359 4·47
37 2 10 2163·355 4287·521 0·000 2 10 2101·774 4046·902 −0·287 2·93
38 6 3 2250·051 515·312 0·000 6 3 2132·130 462·714 −0·352 5·53
39 6 4 2338·983 556·851 0·000 6 4 2200·599 492·909 −0·341 6·29
40 7 1 2548·384 485·687 0·000 7 1 2427·278 440·621 −0·418 4·99
41 7 2 2555·768 488·505 0·000 7 2 2432·781 442·621 −0·418 5·06
42 4 5 2609·804 1559·935 0·000 7 3 2510·407 471·318 −0·411 6·08
43 4 6 2634·233 1589·275 0·000 7 4 2567·632 493·051 −0·402 6·82
44 7 3 2662·979 530·349 0·000 4 5 2568·182 1510·575 −0·319 1·62
45 4 7 2673·957 1637·569 0·000 4 6 2591·296 1537·888 −0·327 1·66
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caution, because theory and experiment are likely to differ at such high frequencies.) For
the i=1, r=1 mode, VIPASA results give an =0·9946 and as =0·9948; while for the
i=7, r=4 mode, an =0·8765 and as =0·8800. (The i=1, r=1 values can be deduced
from Table 2, but those for i=7, r=4 cannot, because the CPT results for this case lie
outside the table.) As expected, the difference between an and as increased with frequency
and, as intuitively predicted in section 2, as is larger than an . In Figure 5 are shown the
actual, using VIPASA, and predicted, using equations (18) and (20), variations of =d =
(=−d) with b* for both of these modes, where

b*=
s

sc
= b×

src

sc
. (23)

b* is used to indicate the proportion of the fundamental CPT critical buckling stress sc ;
i.e., of the lowest value of src for all values of i, that has been applied to the panel. The
panels considered in this paper all happened to be governed by overall buckling when
analyzed by CPT, and so the CPT fundamental critical buckling stress always occurred
for the case (i=1, r=1), so that sc = s1c and hence b*= b when i=1, i.e., when l= l.

The effect of increasing the axial load on the frequencies of the panel can be seen to
be much greater when using SDPT. Thus the curve for the fundamental mode i= r=1
shows that the percentage correction =d =:100% as b*:as , because in this case b*= b

and so b:as . This accords with the prediction made above equation (19). In contrast, for
the i=7, r=4 mode =d = increases from 12·35% for the unloaded case (b*=0) to around
60% when b*1 as ; i.e., when the panel is just about to buckle.

Table 3 is explained in its caption and corresponds to Figure 5, except that it gives
percentage errors o instead of percentage correction factors d. Note that the values of the
loaded CPT frequencies nV

src given in the table were found to be identical with those
predicted by substituting nrc = nV

rc in equation (12). This is because the CPT relationship
between n2 and s is known to be exactly linear when all of the plates of a stiffened panel
analyzed by VIPASA have identical orthotropic properties [22]. For example, consider the
loaded CPT frequency for the i=7, r=4 mode when b*=0·9 which, from Table 3, is
1456·190 Hz. The ratio of the CPT critical buckling stress for that mode and the
fundamental CPT critical buckling stress (both of which can be obtained from the nV

src for
b*=0 given in the table by using equation (3)), was src /sc =1·253326. Hence, from

Figure 5. The variation of =d =, =−d, with b* for the (i=1, r=1) and (i=7, r=4) modes of the panel shown
in Figure 4. The curves representing the variation of =d = predicted by equation (18) when both as and an are known,
or when an is assumed to be equal to as , were both indistinguishable from the curve of the actual variation. —,
Actual variation; -----, variation predicted by equation (20) when an is known and it is assumed that as = an .
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T 3

CPT natural frequencies nV
src for the panel of Figure 4 for increasing levels of axial load, and

their percentage error, oV, relative to the SDPT natural frequencies nV
srs . The final three

columns give the error in predicting oV from equation (17) when an and as are both known
(ons ), or of using equation (19) either when only an is known and it is assumed that as = an (on )

or when only as is known and it is assumed that an = as (os )

Case nV
src oV ons on os

(i, r) b* b (Hz) (%) (%) (%) (%)

1, 1 0·000 0·000 349·972 0·539 0·000 0·000 −0·009
0·100 0·100 332·013 0·598 0·000 0·001 −0·009
0·300 0·300 292·808 0·764 0·000 0·004 −0·009
0·500 0·500 247·468 1·066 0·000 0·009 −0·009
0·700 0·700 191·688 1·776 0·000 0·022 −0·009
0·900 0·900 110·671 6·944 0·000 0·088 −0·009
0·950 0·950 78·256 11·579 0·000 0·197 −0·009

7, 4 0·000 0·000 2742·606 14·094 0·000 0·000 −0·202
0·100 0·080 2630·918 15·458 0·000 0·020 −0·202
0·300 0·239 2391·949 19·208 0·000 0·076 −0·202
0·500 0·399 2126·290 25·445 0·000 0·168 −0·202
0·700 0·559 1822·306 37·873 0·000 0·354 −0·202
0·900 0·718 1456·190 74·796 0·000 0·910 −0·202
0·950 0·758 1349·225 99·116 0·000 1·282 −0·202

equation (23), b=0·718089, which when substituted into equation (12) predicts a loaded
CPT frequency of 1456·194 Hz; i.e., 1456·190 Hz to the accuracy of the computations.

It can be seen that ons =0·000 throughout Table 3. This suggests that SDPT gave an
exactly (at least for all practical purposes) linear relationship between n2 and s. This
linearity was confirmed for the i=1, r=1 mode by demonstrating that VIPASA gave a
value of nV

s1s for b=0·5, which was half of the value of nV
1s that it gave for b=0, to an

accuracy of at least seven significant figures.
The smallness of the errors on and os indicates the effectiveness of using equation (19)

when either the SDPT critical buckling stress is unknown, and so as cannot be determined
directly, or when the SDPT unloaded frequency, and hence an , is unknown. As predicted
beneath equation (22) in section 3, the value of es in the last column of the table can be
seen to be constant for each of the two modes considered.

Overall, the results for the orthotropic panel of Figure 4 show that equations (3)–(7)
and (17)–(20) can be variously used to predict the effect of axial load on its SDPT natural
frequencies to high accuracy. The results are so accurate because all of the constituent
plates were formed from the same near orthotropic laminate. Prediction of the effect of
the axial load on the SDPT frequencies for panels which include anisotropy, uneven axial
stress distributions and low core density is now considered.

5. RESULTS FOR LOW CORE DENSITY PANELS

The cross-section of a low core density (foam) stiffened sandwich panel, derived from
one that has previously been mass optimized [25], is shown in Figure 6. The composite
outer sheets had E11 =131 GPa, E22 =13 GPa, G12 =G13 =2G23 =6·41 GPa, n12 =0·31
and r=1584 kg/m3. The foam had E11 =E22 =6·89 MPa, G12 =G13 =G23 =48·9 MPa,
n=0·0 and density rc =110·6 kg/m3. The axial compressive load was 875·7 kN/m. The
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Figure 6. The cross-section of a stiffened sandwich panel of length 762 mm with low density foam cores.

outer sheets were composed entirely of 0° plies of thickness 0·666 mm for the skin and
1·148 mm for the stiffeners. The foam thicknesses were 9·940 mm for the skin and
16·800 mm for the stiffeners. Hence t1 =11·272 mm and t2 =19·096 mm in Figure 6. Since
the skin and stiffener plates differ, their stress levels were different, and so were their
average densities r. The stiffener stress (density) was approximately 1·75% (1·07%) higher
than that of the skin. The actual plate densities were used during the VIPASA analyses,
but an average panel density of 285·927 kg/m3 was used for hand calculations; e.g., when
using equations (3) and (6).

The CPT and SDPT natural frequencies nrc and nrs (for r=1), predicted from s̄V
rc and

s̄V
rs by equations (3) and (6), respectively, are listed in Table 4. Even though averaged critical

buckling stresses and panel densities were used, the percentage errors oc and os are still
small, the largest being only 0·376%. However, the errors ocs incurred by using CPT instead
of SDPT to find the natural frequencies are much greater; e.g., 3·6% for the fundamental
mode and 39·4% for the first mode with l= l/3. For the i=1, r=1 mode, VIPASA
results gave an =0·9318 and as =0·9330, while for the i=3, r=1 mode an =0·5149 and
as =0·5170. Note that s̄V

1s decreases progressively as i is increased, indicating a mode
dominated by shear deformation. Moreover, the limit to which s̄V

1s is approaching is clearly
less than 70·971 MN/m2, so that since the table gives the lowest CPT buckling stress as
103·072 MN/m2 it follows that values of b* that exceed 70·971/103·0721 0·7 give loadings
above the buckling load, and so are avoided in Figure 7 and Table 5 below.

T 4

The lowest CPT and SDPT average critical buckling stresses, s̄V
1c and s̄V

1s (i.e., r=1) of the
foam core sandwich panel of Figure 6 for the first nine values of i (=l/l). The corresponding
natural frequencies n1c and n1s predicted by equations (3) and (6) are also given plus the
percentage errors oc and os of the predicted natural frequencies compared with the ‘‘correct’’

values nV
1c and nV

1s given by VIPASA

Predicted Predicted
s̄V

1c n1c oc s̄V
1s n1s os ocs

i (MN/m2) (Hz) (%) (MN/m2) (Hz) (%) (%)

1 103·072 393·965 0·010 96·168 380·542 0·077 3·6
2 135·348 902·909 0·032 92·758 747·468 0·376 21·2
3 155·616 1452·231 0·105 80·446 1044·143 0·305 39·4
4 190·884 2144·531 0·128 78·527 1375·491 0·279 56·1
5 246·163 3044·168 0·130 78·913 1723·576 0·258 76·8
6 320·613 4168·973 0·131 78·338 2060·746 0·240 102·5
7 412·741 5518·395 0·128 76·419 2374·508 0·221 132·6
8 521·084 7086·493 0·129 73·762 2666·199 0·212 166·0
9 643·961 8862·536 0·121 70·971 2942·183 0·203 201·5
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Figure 7. The variation of =d =; =−d, with b* for the (i=1, r=1) and (i=3, r=1) modes of the panel shown
in Figure 6. The curves representing the variation of =d = predicted by equation (18) when both as and an are known,
or when an is assumed to be equal to as , were both indistinguishable from the curve of the actual variation. —,
Actual variation; -----, variation predicted by equation (20) when an is known and it is assumed that as = an .

In Figure 7 is shown the variation of =d = as the axial load factor b* is increased for the
fundamental and i=3, r=1 modes. Clearly, =d = is now much larger for all b* than for
the panel results of Figure 5 due to the foam. The actual percentage error, oV, that would
be incurred if CPT were used in place of SDPT to find the loaded natural frequencies for
the fundamental mode and the i=3, r=1 modes is shown in Table 5. It can be seen that
the effect of axial load on the SDPT frequencies is much greater than for the CPT
frequencies. Thus for the fundamental mode when b*=0 the percentage error is 7·324%,
rising to 28·92% when b*=0·7, whereas for the shorter half-wavelength mode the errors
were (as expected) much greater. However, the percentage errors in estimating oV from the
loaded CPT frequencies by using equation (17) when both an and as are known exactly,
ons , or by using equation (19) when either of an or as is known, are very small.

In order to increase the unequal stress distribution between the skin and the stiffeners
an anisotropic (2455) lay-up with t45 =0·0666 mm was used instead of the 0° plies of the
skin cover plates, while the stiffener cover plates became (245, 0, 3 45) with
t0 =16t45 =0·9184 mm. Hence the thicknesses and densities of the skin and stiffener plates

T 5

Results for the panel of Figure 6, with all symbols having the meanings given in the caption
of Table 3

Case nV
src oV ons on os

(i, r) b* b (Hz) (%) (%) (%) (%)

1, 1 0·000 0·000 393·927 7·324 0·000 0·000 −0·068
0·100 0·100 373·712 8·187 0·000 0·008 −0·067
0·300 0·300 329·583 10·731 0·000 0·032 −0·067
0·500 0·500 278·549 15·625 0·000 0·078 −0·067
0·700 0·700 215·763 28·920 0·000 0·204 −0·067

3, 1 0·000 0·000 1450·707 94·217 0·000 0·000 −0·200
0·100 0·066 1401·840 108·004 0·000 0·030 −0·199
0·300 0·199 1298·602 152·793 0·000 0·126 −0·199
0·500 0·331 1186·414 261·459 0·001 0·359 −0·199
0·700 0·464 1062·445 910·208 0·001 1·789 −0·198
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remained the same, but now the stress in the stiffener plates was 5·078 times greater than
that in the skin plates. The linearity of the relationship between n2 and s for the i=1,
r=1 and i=3, r=1 modes was again checked by using VIPASA, and the predicted and
actual values of the frequency at b*=0·5 were found to be within 0·272% and 2·257%
of each other, respectively. The curves of the actual variation of =d = and of that predicted
by equation (18) for the i=3, r=1 mode were now found to be distinct, but even for
this highly unrealistic panel the largest difference between the actual loaded SDPT
frequencies nV

srs and those predicted from the loaded CPT frequencies was never larger than
−0·23% and 6·0% for the i=1, r=1 and i=3, r=1 modes, respectively.

6. CONCLUSIONS

Many structures have a linear or approximately linear relationship between natural
frequencies squared and load factor both with and without shear deformation included.
Hence the equations presented enable prediction and/or correction of errors caused by
neglecting shear deformation when calculating natural frequencies under load. The
principal equations are equations (17)–(22), which are very simple to apply and yield
Table 1, which is adequate for qualitative and many approximate quantitative purposes
all the way up to the elastic buckling load. An important insight is given into why, and
how dramatically, the errors caused by neglecting shear deformation grow with increasing
load.

Uses of the equations presented include the following. If the unloaded natural
frequencies and corresponding buckling loads are known both with and without shear
deformation included, then the error for that problem and similar problems caused by
calculating loaded natural frequencies with shear deformation neglected can be predicted
reasonably accurately. Alternatively, the natural frequencies of the loaded structure,
including shear deformation, can be predicted to good accuracy. They can also be
predicted somewhat less accurately if either the shear deformable unloaded natural
frequency or buckling load is unknown.

The usefulness of the methods presented for uniform compression problems has been
demonstrated by applying them to a stiffened aerospace panel consisting of a prismatic
assembly of laminated plates and to two stiffened sandwich panels with very low core
densities and shear stiffnesses, one of which was designed such that the stiffener stress was
five times that of the skin. The natural frequencies calculated from one or both of the
unloaded natural frequency and buckling load with shear deformation included were
always good. This contrasts with the much poorer accuracy achieved by simply using
classical plate theory to obtain the natural frequencies of such uniformly compressed
panels.
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APPENDIX: NOTATION

on percentage error from setting as = ani =l/l, integer number of longitudinal
half-wavelengths l in plate assembly mode os percentage error when using equation (6) to

predict srs from nrsl panel length
n natural frequency of free vibration os percentage error from setting an = as

l =l/i, half-wavelengthan =n2
rs /n2

rc , ratio of the square of an unloaded
natural frequency with shear deflection r density

s load factor or uniform longitudinal com-included or ignored
pressive stressas =srs /src , ratio of a critical buckling load

factor or stress with shear deflection sc fundamental critical buckling load factor or
included or ignored stress

b =s/src , load factor or stress relative to its
buckling value for the same mode

b* =s/sc , load factor or stress relative to its Superscript
V ‘‘exact’’ VIPASA resultlowest buckling value for any mode

d percentage correction needed to adjust for
shear deformation; see equations (18) and

Subscripts(20)
dn percentage correction needed due to setting c shear deflection ignored; e.g., CPT for

as = an plates
ds percentage correction needed due to setting r denotes rth critical value (for a given l for

plate structures)an = as

o percentage error from ignoring shear defor- s shear deflection included; e.g., SDPT for
mation; see equations (17) and (19) plates

s denotes load or longitudinal compressiveoc percentage error when using equation (3) to
predict src from nrc stress present


